Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: General

Journal: Vår Fuglefauna

Volume: 41 , Pages: 132-137.

Language: Norwegian (In Norwegian)

Download:

Full reference: Øien, I.J. & Aarvak, T. 2018. Fortsatt mange utfordringer for dverggjessene [Still many challenges for Lesser White-fronted Geese], Vår Fuglefauna: 41, 132-137.

Keywords: monitoring, threats, migration, Norway, Fennoscandia

Literature type: Report

Language: English

Download:

Full reference: Jones, I.L., Whytock, R.C. & Bunnefeld, N. 2018. Assessing motivations for the illegal killing of Lesser White-fronted Geese at key sites in Kazakhstan. , AEWA Lesser White-fronted Goose International Working Group Report Series No. 6, Bonn, Germany.

Keywords: conservation, hunting, Kazakhstan, illegal hunting, Questionnaires, Unmatched Count Technique

Literature type: Scientific

Journal: Scientific reports

Volume: 8 , Pages: 214.

DOI: 10.1038/s41598-017-18594-2

Language: English

External Link:

Download:

Full reference: Jie, L., Xiang, G., Guangming, Z., Shanshan, H., Minzhou, Z., Xiaodong, L., & Xin, L. 2018. Coupling modern portfolio theory and marxan enhances the efficiency of Lesser White-fronted Goose’s (Anser erythropus) habitat conservation. Scientific reports 8: 214. https://www.dx.doi.org/10.1038/s41598-017-18594-2

Keywords: ecological modelling, climate change, conservation, habitat restoration, Jiangxi, Yangtze, China

Abstract:

Climate change and human activities cause uncertain changes to species biodiversity by altering their habitat. The uncertainty of climate change requires planners to balance the benefit and cost of making conservation plan. Here optimal protection approach for Lesser White-fronted Goose (LWfG) by coupling Modern Portfolio Theory (MPT) and Marxan selection were proposed. MPT was used to provide suggested weights of investment for protected area (PA) and reduce the influence of climatic uncertainty, while Marxan was utilized to choose a series of specific locations for PA. We argued that through combining these two commonly used techniques with the conservation plan, including assets allocation and PA chosing, the efficiency of rare bird’s protection would be enhanced. In MPT analyses, the uncertainty of conservation-outcome can be reduced while conservation effort was allocated in Hunan, Jiangxi and Yangtze River delta. In Marxan model, the optimal location for habitat restorations based on existing nature reserve was identified. Clear priorities for the location and allocation of assets could be provided based on this research, and it could help decision makers to build conservation strategy for LWfG.

Literature type: Action Plan

Language: Bulgarian

Download:

Full reference: Iankov, P. & Dobrev, D. 2018. [Action plan for conservation of the Lesser White-fronted Goose (Anser erythropus) in Bulgaria 2018-2027.] , MOCV, Sofia. 76 pp.

Keywords: Action plan, Bulgaria

Literature type: Scientific

Journal: Wildfowl

Volume: 68 , Pages: 44-69.

Language: English

Download:

Full reference: Cuthbert, R.J., Aarvak, T., Boros, E., Eskelin, T., Fedorenko, V., Karvonen, R., Kovalenko, A., Lehikoinen, S., Petkov, N., Szilágy, A., Tar, J., Timonen, S., Timoshenko, A., Zhadan, K. & Zuban, I. 2018. Estimating the autumn staging abundance of migratory goose species in northern Kazakhstan. Wildfowl 68: 44-69.

Keywords: Anser erythropus, Branta ruficollis, flyway population estimates, sampling methodology.

Abstract:

Northern Kazakhstan and adjoining areas of Russia have vitally important autumn staging sites for arctic breeding geese, especially for the globally threatened Lesser White-fronted Goose Anser erythropus (LWfG) and Red-breasted Goose Branta ruficollis (RbG). Part of the Fennoscandian and the entire Western Main subpopulations of LWfG and the global population of RbGs are believed to stage there, which facilitates obtaining up-to-date population estimates for these species. A total of 80 lakes were surveyed across four survey areas in autumn 2016, recording more than 1.2 million geese in the region. Greater White-fronted Geese Anser albifrons (GWfG) were the most abundant with an estimated c. 890,000 birds, with counts of c. 250,000 Greylag Geese Anser anser, c. 53,000 Ruddy Shelduck Tadorna ferruginea, c. 39,100 RbG and c. 32,000 LWfG also recorded during the surveys. Based on a priori lake classification for both LWfG and RbG, to stratify survey lakes in order to generate total population estimates, survey teams visited a sample of different lake types. After removing lakes smaller than the observed minimum lake size used by each species, the total number of potential lakes available within the core staging areas of each species (335 lakes of > 320 ha for LWfG; 361 lakes of > 100 ha for RbG) was calculated. Bootstrapping procedures, with replacement, were then used to estimate the total numbers likely to be present in the region. These calculations produced total estimates of 34,250 birds (95% confidence intervals = 28,500–40,100 birds) for the Western Main population of LWfG (well in excess of current population estimates of 8,000–13,000 individuals) and an estimated population of 50,100 RbG (95% CI = 28,100–72,600 birds), broadly similar to recent population estimates of 55,000–57,000. We recommend that future surveys continue to monitor as large a region and as many lakes as possible in order to capture inter-annual variation in the distribution of birds and to provide more reliable assessments of population size and trends of these migratory species.

Literature type: Rep.article

Language: English

Download:

Full reference: Cao, L., Fox, A.D., Morozov, V.V., Syroechkovskiy jr., E.E.. & Solovieva, D. 2018. , Pp. 38-39 in Fox, A.D. & Leafloor, J.O. (eds.). A Global Audit of the Status and Trends of Arctic and Northern Hemisphere Goose Populations (Component 2: Population accounts). CAFF: Akureyri, Iceland. ISBN 978-9935-431-74-5.

Keywords: population status, China, Easter Palearctic, East Russia, Japan

Literature type: Rep.article

Language: English

Download:

Full reference: Aarvak, T., Øien, I.J. & Morozov, V.V. 2018. Western main Lesser White-fronted Goose Anser erythropus. , Pp. 43-44 in Fox, A.D. & Leafloor, J.O. (eds.). A Global Audit of the Status and Trends of Arctic and Northern Hemisphere Goose Populations (Component 2: Population accounts). CAFF: Akureyri, Iceland. ISBN 978-9935-431-74-5.

Keywords: population status, Wester main, Russia

Literature type: Rep.article

Language: English

Download:

Full reference: Aarvak, T. & Øien, I.J. 2018. Lesser White-fronted Goose Anser erythropus - Fennoscandian population. , Pp. 40-42 in Fox, A.D. & Leafloor, J.O. (eds.). A Global Audit of the Status and Trends of Arctic and Northern Hemisphere Goose Populations (Component 2: Population accounts). CAFF: Akureyri, Iceland. ISBN 978-9935-431-74-5.

Keywords: population status, Fennoscandia, Norway

Literature type: Report

Language: English

Download:

Full reference: Vougioukalou, M., Kazantzidis, S. & Aarvak, T. 2017. Safeguarding the Lesser White-fronted Goose Fennoscandian population at key staging and wintering sites within the European flyway. , Special publication. LIFE+10 NAT/GR/000638 Project, HOS/BirdLife Greece, HAOD/Forest Research Institute, NOF/BirdLife Norway report no. 2017-2. 164p.

Keywords: EU-Life, conservation, Norway, Greece, Finland, Hungary, Estonia, Lithuania,

Literature type: Scientific

Journal: Biology Bulletin

Volume: 44 , Pages: 960–979

DOI: 10.1134/S1062359017080143

Download:

Full reference: Rozenfeld, S. B., Soloviev, M.Yu., Kirtaev, G.V., Rogova, N.V. & Ivanov, M.N. 2017. Estimation of the Spatial and Habitat Distribution of Anseriformes in the Yamal-Nenets and Khanty-Mansi Autonomous Regions (Experience from the Use of Ultralight Aircrafts). Biology Bulletin 44: 960–979 https://www.dx.doi.org/10.1134/S1062359017080143

Keywords: migration, monitoring, aerial counts, Russia, western Siberia, Yamal

Abstract:

In Russia, the conservation of anseriformes is possible through the creation of temporary huntingfree zones during hunting season, especially in spring. A justification for creating such zones and outlining their boundaries (by analogy with the experience derived from the countries on North America) each season must be based on data on annual waterfowl monitoring. The present paper describes census experience drawn from the use of ultralight aviation for further delineating the key staging sites of waterfowl in western Siberia. To refine the duration of monitoring, observation data were combined with those derived from geese equipped with GSM-GPS transmitters. In the spring and autumn of 2012–2014, we covered over 50000 km of aerial surveys of 25 waterfowl species. A new method is advanced for assessing their numbers based on visual observations, flock photography, and modern statistics. We estimated the species densities in 16 habitat types delineated on the basis of Landsat imagery. In terms of this, a system is proposed for extrapolating the survey data on 25 waterfowl species onto model sites in western Siberia. Drops in the numbers of several mass game species were noted. Based on an evaluation of the habitat quality, ten waterfowl hunting-free zones were suggested and delineated. A GIS project was launched that incorporated the main migration routes, boundaries of the key sites, places of mass bird aggregations, and sites for the observation of rare, Red Data Book. A program of long-term monitoring and sustainable use of waterfowl in the study region is offered. Such an approach must also be applied to other regions of Russia.

Number of results: 710