Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: Thesis

Language: English

External Link:

Full reference: Markkola, J. 2022. Ecology and conservation of the Lesser White-fronted Goose Anser erythropus. , PhD thesis, Acta Universitatis Ouluensis. A Scientiae Rerum Naturalium 770. Faculty of Science, University of Oulu, Finland.

Keywords: spring arrival, Anser erythropus, Anser fabalis, breeding schedule, habitat, diet selection, meadow management, population genetic structure, Finland

Abstract:

I studied the rare and threatened lesser white-fronted goose (Anser erythropus), abbreviated LWfG in 1989–1996 in sub-arctic Finnish Lapland (I). The studied subpopulation consisted of 2–15 breeding pairs annually. A total of 30 broods were observed with an average of 2.9 goslings per brood. The 1st year survival of tagged 10 geese was low. Satellite locations, recoveries and resightings were received from NW Russia, Kazakhstan and the Azov Sea area. Cold spells had a negative, and the sum of effective temperatures by 5 July a positive influence on reproduction. Habitat selection (II) was studied in the same area. LWfG preferred the vicinity of water, flat close-range landscape, low forest height and intermediate relative altitudes. LWfG aggregated in the vicinity of conspecifics within the preferred habitats. The averaged RSF model assigned observation and random points correctly with 83.4% success. Locations of historical observations of LWfG matched the predicted distribution of breeding sites. (III) Spring migration patterns on the Bothnian Bay coast of LWfG were examined in 1907–1916 and 1949–2014 and the taiga bean goose (Anser fabalis fabalis) in 1975–2014. Arrival of the short-distance migrant A. fabalis advanced more and earlier than the long-distance migrant A. erythropus, 10.9 days since late 1980’s vs. 5.3 days since the beginning of the 2000’s. In the LWfG, the best model for explaining variation in timing included global and local temperatures, in A. fabalis global and local temperatures and winter NAO. Increasing global temperatures seem to explain trends in both. In the spring staging places of the Bothnian Bay almost all dietary items of the LWfG were Monocotyledons, mostly grasses growing in extensive sea-shore meadows (IV). Only Phragmites, Festuca and possibly Triglochin palustris were preferred. Lesser White-fronts preferred extensive natural meadows. Mowing and grazing benefit the restoration of habitats. Genetic structuring of the LWfG was examined in its whole distribution area from Fennoscandia to East Asia (V). A fragment of the control region of mtDNA was sequenced from 110 individuals. 15 mtDNA haplotypes were assigned to two mtDNA lineages. Molecular variance showed significant structuring among populations: the main western in north-western Russia – Central Siberia, the main eastern in East Asia and the Nordic one, which earns a status as an independent management unit.

Literature type: Scientific

Journal: Quaternary International

Volume: 626-627 , Pages: 22-32

DOI: 10.1016/j.quaint.2020.10.022

Language: English

Full reference: Lloveras, L., Garcia, L., Marqueta, M., Maroto, J., Soler, J. & Soler, N. 2022. The role of birds in Upper Palaeolithic sites: Zooarchaeological and taphonomic analysis of the avian remains from Arbreda Cave (Seriny`a,northeast Iberia). Quaternary International 626-627: 22-32 https://www.dx.doi.org/10.1016/j.quaint.2020.10.022

Keywords: avian remains, small prey, subsistence, Iberian peninsula, Upper palaeolithic, Taphonomy

Abstract:

Intensification in the procurement of small game, including different taxa of birds, has been proposed as one of the indicators of dietary shifts occurring in western Mediterranean regions during the Upper Palaeolithic as a consequence of both increased human hunting pressures and environmental change. In this paper, avian remains recovered from the Upper Palaeolithic levels of Arbreda Cave (Serinyà, northeast Iberia) are analysed. Our results evidence a high diversity of bird taxa in most levels, with the presence of a minimum of 50 species, including birds that inhabit a variety of biotopes such as cliffs, rivers and wetlands, and open grassland, along with coniferous and mixed forests. Taphonomic analysis of the bird bones from all levels indicates a mixed origin for the material, humans being one of the agents responsible for the accumulations. The results show that birds were caught for consumption. However, wing feathers and phalanges were also extracted, probably for ornamental or ceremonial purposes. A significant number of tooth/beak-marked bones and digested remains also evidence the participation of different species of raptors and, to a lesser degree, of small terrestrial carnivores in creating these assemblages. Finally, some birds died naturally and were then incorporated into the archaeological record. This study contributes to the discussion of the importance of the exploitation of birds by hunter-gatherers during the Upper Palaeolithic in the region.

Literature type: Scientific

Journal: Bird Conservation International

Volume: 33 , Pages: e42, 1–8

DOI: 10.1017/S0959270922000478

Language: English

Full reference: Kruckenberg, H., Moonen S., Kölzsch, A., Liljebäck, N. & Müskens, GJDM. 2022. Migration routes and stepping stones along the western flyway of Lesser White-fronted Geese (Anser erythropus). Bird Conservation International 33: e42, 1–8 https://www.dx.doi.org/10.1017/S0959270922000478

Keywords: reintroduction, Sweden, migration routes, tracking, Brownian bridge, dBBMM,

Abstract:

In 2015 and 2016 four Lesser White-fronted Geese (Anser erythropus), a globally threatened species, were caught and tagged during spring migration representing nearly 10% of the entire Swedish breeding population at the time. Two of the birds were followed over more than one season. Tracking data revealed an unexpected wide network of migration corridors and staging sites. Autumn and spring migration differed by stepping-stone sites and migration speed. So far unknown key stopover sites were discovered in Denmark, northern Germany, and Sweden. By using dynamic Brownian bridge movement models, the potential areas that Lesser Whitefronted Geese used during migration are described and conservation implications spotlighted. This study provides another important piece of the puzzle describing the migration of Lesser White-fronted Geese in Western Europe.

Literature type: Red list

Language: Russian

Download:

Full reference: Kondratyev A.V. & Litovka D.I. 2022. Красная книга Чукотского автономного округа: В 2 т. Т. 1. Редкие и находящиеся под угрозой исчезновения виды животных. [Red book of Chukotka autonomous okrug. The rare and endangered species of animals.] , OOO Teksotel, Nizhny Novgorod. 225 pp.

Keywords: Chukotka, Russia, Bilibinsky, Chaunsky, Red list, population size, hunting, hunting ban,

Literature type: Scientific

Journal: The Journal of applied ecology

Volume: 59 , Pages: 1911–1924

DOI: 10.1111/1365-2664.14198

Language: English

External Link:

Download:

Full reference: Jones, I.L., Timoshenko, A., Zuban, I., Zhadan, K., Cusack, J.J., Duthie, A.B., Hodgson, I.D., Minderman, J., Pozo, R.A., Whytock, R.C., & Bunnefeld, N. 2022. Achieving international biodiversity targets: Learning from local norms, values and actions regarding migratory waterfowl management in Kazakhstan. The Journal of applied ecology 59: 1911–1924 https://www.dx.doi.org/10.1111/1365-2664.14198

Keywords: biodiversity targets, conservation conflict, ecological modelling, hunting, migratory species, policy‐making; socio‐ecological surveys, Kazakhstan

Abstract:

1) Migratory species are protected under international legislation; their seasonal movements across international borders may therefore present opportunities for understanding how global conservation policies translate to local-level actions across different socio-ecological contexts. Moreover, local-level management of migratory species can reveal how culture and governance affects progress towards achieving global targets. Here, we investigate potential misalignment in the two-way relationship between global-level conservation policies (i.e. hunting bans and quotas) and local-level norms, values and actions (i.e. legal and illegal hunting) in the context of waterfowl hunting in northern Kazakhstan as a case-study. 2) Northern Kazakhstan is globally important for waterfowl and a key staging area for arctic-breeding species. Hunting is managed through licences, quotas and seasonal bans under UN-AEWA intergovernmental agreements. To better understand the local socio-ecological context of waterfowl hunting, we take a mixed-methods approach using socio-ecological surveys, informal discussions and population modelling of a focal migratory goose species to: (a) investigate motivations for hunting in relation to socio-economic factors; (b) assess knowledge of species' protection status; and (c) predict the population size of Lesser White-fronted Geese (LWfG; Anser erythropus; IUCN Vulnerable) under different scenarios of survival rates and hunting offtake, to understand how goose population demographics interact with the local socio-ecological context. 3) Model results showed no evidence that waterfowl hunting is motivated by financial gain; social and cultural importance were stronger factors. The majority of hunters are knowledgeable about species' protection status; however, 11% did not know LWfG are protected, highlighting a key area for increased stakeholder engagement.Simulations of LWfG population growth over a 20-year period showed LWfG are highly vulnerable to hunting pressure even when survival rates are high. This potential impact of hunting highlights the need for effective regulation along the entire flyway; our survey results show that hunters were generally compliant with newly introduced hunting regulations, showing that effective regulation is possible on a local level. Synthesis and applications. Here, we investigate how global conservation policy and local norms interact to affect the management of a threatened migratory species, which is particularly important for the protection and sustainable management of wildlife that crosses international borders where local contexts may differ. Our study highlights that to be effective and sustainable in the long-term, global conservation policies must fully integrate local socio-economic, cultural, governance and environmental contexts, to ensure interventions are equitable across entire species' ranges. This approach is relevant and adaptable for different contexts involving the conservation of wide-ranging and migratory species, including the 255 migratory waterfowl covered by UN-AEWA (United Nations Agreement on the Conservation of African-Eurasian Migratory Waterbirds).

Literature type: Scientific

Journal: Land

Volume: 11 , Pages: 1946

DOI: 10.3390/land11111946

Language: English

External Link:

Download:

Full reference: Fan, R., Lei, J., Wu, E., Lu, C., Jia, Y., Zeng, Q. & Lei, G. 2022. Species distribution modelling of the breeding site distribution gaps of Lesser White-fronted Goose in Siberia under climate change. Land 11: 1946 https://www.dx.doi.org/10.3390/land11111946

Keywords: climate change, breeding sites, conservation gaps, species habitat conservation, Siberia, Russia

Abstract:

Climate change has become an important cause of the loss of bird habitat and changes in bird migration and reproduction. The lesser white-fronted goose (Anser erythropus) has a wide range of migratory habits and is listed as vulnerable on the IUCN (International Union for Conservation of Nature) Red List. In this study, the distribution of suitable breeding grounds for the lesser white-fronted goose was assessed in Siberia, Russia, using a combination of satellite tracking and climate change data. The characteristics of the distribution of suitable breeding sites under different climate scenarios in the future were predicted using the Maxent model, and protection gaps were assessed. The analysis showed that under the background of future climate change, temperature and precipitation will be the main climatic factors affecting the distribution of breeding grounds, and the area associated with suitable breeding habitats will present a decreasing trend. Areas listed as an optimal habitat only accounted for 3.22% of the protected distribution; however, 1,029,386.341 km2 of optimal habitat was observed outside the protected area. Obtaining species distribution data is important for developing habitat protection in remote areas. The results presented here can provide a basis for developing species-specific habitat management strategies and indicate that additional attention should be focused on protecting open spaces.

Literature type: Scientific

Journal: Ecology and Evolution

Volume: 2021;00 , Pages: 1-14.

DOI: 10.1002/ece3.7310

Language: English

Download:

Full reference: Tian, H., Solovyeva, d., Danilov, G., Vartanyan, S., Wen,L., Lei, J., Lu, C., Bridgewater, P., Lei, G. & Zeng, Q. 2021. Combining modern tracking data and historical records improves understanding of the summer habitats of the Eastern Lesser White-fronted Goose Anser erythropus. Ecology and Evolution 2021;00: 1-14. https://www.dx.doi.org/10.1002/ece3.7310

Keywords: Asia, Arctic, eastern population, GPS tracking, Lesser White-fronted Goose Anser erythropus, species distribution modeling, summer range

Abstract:

The Lesser White-fronted Goose (Anser erythropus), smallest of the “gray” geese, is listed as Vulnerable on the IUCN Red List and protected in all range states. There are three populations, with the least studied being the Eastern population, shared between Russia and China. The extreme remoteness of breeding enclaves makes them largely inaccessible to researchers. As a substitute for visitation, remotely tracking birds from wintering grounds allows exploration of their summer range. Over a period of three years, and using highly accurate GPS tracking devices, eleven individuals of A. erythropus were tracked from the key wintering site of China, to summering, and staging sites in northeastern Russia. Data obtained from that tracking, bolstered byground survey and literature records, were used to model the summer distribution of A. erythropus. Although earlier literature describes a patchy summer range, the model suggests a contiguous summer habitat range is possible, although observations to date cannot confirm A. erythropus is present throughout the modeled range. The most suitable habitats are located along the coasts of the Laptev Sea, primarily the Lena Delta, in the Yana-Kolyma Lowland, and smaller lowlands of Chukotka with narrow riparian extensions upstream along major rivers such as the Lena, Indigirka,and Kolyma. The probability of A. erythropus presence is related to areas with altitude less than 500 m with abundant wetlands, especially riparian habitat, and a climate with precipitation of the warmest quarter around 55 mm and mean temperature around 14°C during June-August. Human disturbance also affects site suitability, with a gradual decrease in species presence starting around 160 km from human settlements. Remote tracking of animal species can bridge the knowledge gap required for robust estimation of species distribution patterns in remote areas. Better knowledge of species' distribution is important in understanding the large-scale ecological consequences of rapid global change and establishing conservation management strategies.

Literature type: Scientific

Journal: Ornis svecica

Volume: 31 , Pages: 125–138

DOI: 10.34080/OS.V31.22430

Language: English

Download:

Full reference: Liljebäck, N., Koffijberg, K., Kowallik, C., Månsson, J. & Andersson, Å. 2021. Use of foster parents in species conservation may cause conflicting objectives: Hybridization between Lesser White-fronted Goose Anser erythropus and Barnacle Goose Branta leucopsis. Ornis svecica 31: 125–138 https://www.dx.doi.org/10.34080/OS.V31.22430

Keywords: reintroduction, foster parents, Sweden, hybridization

Abstract:

Following the use of Barnacle Geese Branta leucopsis as foster parents in a conservation program for the endangered Lesser White-fronted Goose Anser erythropus in Sweden 1981–1999, mixed breeding pairs of the two species were established in the wild. We find indications that this was related to shared moulting habits of the two species in the Bothnian Sea during late 1990s. Starting in 2003, five mixed pairs produced at least 49 free-flying hybrid offspring until 2013, when the last breeding was confirmed. Reported numbers of hybrids did not increase in parallel to the production of young hybrids over time. After 2013, the number of hybrids started to decrease in Sweden and the Netherlands. Lower numbers of hybrids than expected can partly be explained by management actions taken, but may also be associated with low survival due to genetic outbreeding. Mixed pairs and their offspring entirely adopted the migratory habits of Barnacle Geese, overlapping very little with sites used by Lesser White-fronted Geese. We find no evidence that the hybrids ever posed a serious threat to Lesser White-fronted Geese breeding in Fennoscandia.

Literature type: Scientific

Journal: Wildfowl

Volume: SpecIs 6 , Pages: 206–243.

Language: English

External Link:

Download:

Full reference: Ao, P., Wang, X., Solovyeva, D., Meng, F., Ikeuchi, T., Shimada, T., Park, J., Gao, D., Liu, G., Hu, B., Natsagdorj, T., Zheng, B., Vartanyan, S., Davaasuren, B., Zhang, J., Cao, L. & Fox, A. 2021. Rapid decline of the geographically restricted and globally threatened Eastern Palearctic Lesser White-fronted Goose Anser erythropus. Wildfowl SpecIs 6: 206–243.

Keywords: abundance, key sites, migration routes, population trends, telemetry tracking, China, Asia

Abstract:

The Lesser White-fronted Goose Anser erythropus, which breeds across northern Eurasia from Norway to Chukotka, is globally threatened and is currently classified as Vulnerable by the International Union for Conservation of Nature. The Eastern Palearctic population of the species was thought to breed in arctic Russia, from east of the Taimyr Peninsula to Chukotka, and to winter in East Asia, but its precise status, abundance, breeding and wintering ranges, and migration routes were largely unknown, reducing the effectiveness of conservation efforts. In this paper, we combined results from satellite tracking, field surveys, a literature review and expert knowledge, to present an updated overview of the winter distribution and abundance of Lesser White-fronted Geese in the Eastern Palearctic, highlighting their migration corridors, habitat use and the conservation status of the key sites used throughout the annual cycle. Improved count coverage puts the Eastern Palearctic Lesser White-fronted Geese population at c. 6,800 birds in 2020, which represents a rapid and worrying decline since the estimate of 16,000 in 2015, as it suggests at least a halving of numbers in just five years. East Dongting Lake (Hunan Province) in China is the most important wintering site for the species in East Asia, followed by Poyang Lake (Jiangxi Province) and Caizi Lake (Anhui Province), with one key wintering site in Miyagi County in Japan. Satellite tracking showed that eight individuals captured during summer on the Rauchua River, Chukotka, Russia wintered in the middle and lower reaches of the Yangtze River floodplain in China. Their migration speed was slower in spring than in autumn, mainly because of longer stopover duration at staging sites in spring. The tracked geese mainly used cultivated land on migration stopovers (52% in spring; 45% in autumn), tundra habitat in summer (63%), and wetlands (66%) in winter. Overall, 87% of the GPS fixes were in protected areas during the winter, far greater than in spring (37%), autumn (28%) and summer (7%). We urge more tracking of birds of differing wintering and breeding provenance to provide a fuller understanding of the migration routes, staging sites and breeding areas used by the geese, including for the birds wintering in Japan. The most urgent requirement is to enhance effective conservation and long-term monitoring of Lesser White-fronted Geese across sites within China, and particularly to improve our understanding of the management actions needed to maintain the species. Collaboration between East Asian countries also is essential, to coordinate monitoring and to formulate effective protection measures for safeguarding this population in the future.

Literature type: Scientific

Journal: Ornis Hungarica

Volume: 28 , Pages: 28–48.

DOI: 10.2478/orhu-2020-0003

Language: English (In English with Hungarian summary)

Download:

Full reference: Zuban, I., Vilkov, V., Kalashnikov, M., Zhadan, K. & Bisseneva, A. 2020. The results of spring monitoring on the status of geese populations in the North Kazakhstan Region during 2011-2018. Ornis Hungarica 28: 28–48. https://www.dx.doi.org/10.2478/orhu-2020-0003

Keywords: monitoring, Kazakhstan, Northern Kazakhstan, spring staging

Abstract:

The article presents the results of monitoring studies on the population dynamics of goose species at one of the largest stopover sites in Northern Kazakhstan during the springs of 2011–2018. Comparative analysis of the phenological phases at the beginning and end of migration over a 50 year period is conducted and changes in timing of migration for the studied groups are established. Data on the number of flocks at various stages of the migration process are presented. Authors revealed characteristics of the distribution of birds in the directions of migration through the region associated with the presence of various migration strategies. Based on the distribution and number of geese in the region for rest and feeding, key zones with characteristics of their natural and anthropogenic state were identified. It has been established that water bodies and large areas have optimal conditions for rest and replenishment of energy reserves for the birds.

Number of results: 735