Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: Scientific

Journal: Molecular Phylogenetics and Evolution

Volume: 101 , Pages: 303-313.

DOI: 10.1016/j.ympev.2016.05.021

Language: English

Full reference: Ottenburghs, J., Megens, H.-J., Kraus, R.H.S., Madsen, O., van Hooft, P., van Wieren, S.E., Crooijmans, R.P.M.A., Ydenberg, R.C., Groenen, M.A.M. & Prins, H.H.T. 2016. A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Molecular Phylogenetics and Evolution 101: 303-313. https://www.dx.doi.org/10.1016/j.ympev.2016.05.021

Keywords: Consensus, Concatenation, Gene tree, Hybridization, Incomplete lineage sorting, Species tree

Abstract:

Phylogenetic incongruence can be caused by analytical shortcomings or can be the result of biological processes, such as hybridization, incomplete lineage sorting and gene duplication. Differentiation between these causes of incongruence is essential to unravel complex speciation and diversification events. The phylogeny of the True Geese (tribe Anserini, Anatidae, Anseriformes) was, until now, contentious, i.e., the phylogenetic relationships and the timing of divergence between the different goose species could not be fully resolved. We sequenced nineteen goose genomes (representing seventeen species of which three subspecies of the Brent Goose, Branta bernicla) and used an exon-based phylogenomic approach (41,736 exons, representing 5887 genes) to unravel the evolutionary history of this bird group. We thereby provide general guidance on the combination of whole genome evolutionary analyses and analytical tools for such cases where previous attempts to resolve the phylogenetic history of several taxa could not be unravelled. Identical topologies were obtained using either a concatenation (based upon an alignment of 6,630,626 base pairs) or a coalescent-based consensus method. Two major lineages, corresponding to the genera Anser and Branta, were strongly supported. Within the Branta lineage, the White-cheeked Geese form a well-supported sub-lineage that is sister to the Red-breasted Goose (Branta ruficollis). In addition, two main clades of Anser species could be identified, the White Geese and the Grey Geese. The results from the consensus method suggest that the diversification of the genus Anser is heavily influenced by rapid speciation and by hybridization, which may explain the failure of previous studies to resolve the phylogenetic relationships within this genus. The majority of speciation events took place in the late Pliocene and early Pleistocene (between 4 and 2 million years ago), conceivably driven by a global cooling trend that led to the establishment of a circumpolar tundra belt and the emergence of temperate grasslands. Our approach will be a fruitful strategy for resolving many other complex evolutionary histories at the level of genera, species, and subspecies.

Literature type: Scientific

Journal: Molecular Ecology

Volume: 19 , Pages: 2408-2417.

DOI: 10.1111/j.1365-294X.2010.04653.x

Language: English

Full reference: Ruokonen, M., Aarvak, T., Chesser, R.K., Lundqvist, A.-C. & Merilä, J. 2010. Temporal increase in mtDNA diversity in a declining population. Molecular Ecology 19: 2408-2417. https://www.dx.doi.org/10.1111/j.1365-294X.2010.04653.x

Keywords: genetics

Abstract:

In small and declining populations levels of genetic variability are expected to be reduced due to effects of inbreeding and random genetic drift. As a result, both individual fitness and populations’ adaptability can be compromised, and the probability of extinction increased. Therefore, maintenance of genetic variability is a crucial goal in conservation biology. Here we show that although the level of genetic variability in mtDNA of the endangered Fennoscandian lesser white-fronted goose Anser erythropus population is currently lower than in the neigbouring populations, it has increased six-fold during the past 140 years despite the precipitously declining population. The explanation for increased genetic diversity in Fennoscandia appears to be recent spontaneous increase in male immigration rate equalling 0.56 per generation. This inference is supported by data on nuclear microsatellite markers, the latter of which show that the current and the historical Fennoscandian populations are significantly differentiated (FST = 0.046, P = 0) due to changes in allele frequencies. The effect of male-mediated gene flow is potentially dichotomous. On the one hand it may rescue the Fennoscandian lesser white-fronted goose from loss of genetic variability, but on the other hand, it eradicates the original genetic characteristics of this population.

Literature type: Report

Language: English

Download:

Full reference: Amato, G. 2010. A Review of the Conservation Genetics Issues Confronting the Lesser White-fronted Goose Recovery Program. , Executive Summary for unfinalized report.

Keywords: genetics, reintroduction

Literature type: Report

Language: Swedish (In Swedish)

Full reference: Boberg, C. 2009. Hur ska den biologiska diversiteten bevaras? En granskning av dagens bevarandebiologi. [How shall biodiversity be conserved? An investigation into present conservation biology.] , Självständigt arbete i biologi, 15hp, vårterminen 2009. Institutionen för biologisk grundutbildning, Uppsala universitet

Keywords: Sweden, reintroduction, genetics, introgression

Literature type: Report

Language: English

Download:

Full reference: Banks, A.N., Wright, L.J., Maclean, I.M.D., Hann, C. & Rehfisch, M.M. 2008. Review of the status of introduced non-native waterbird species in the area of the African-Eurasian Waterbird Agreement: 2007 Update. , BTO Research Report No. 489.

Keywords: re-introduction, feral, captivity, genetics, escapee

Literature type: Scientific

Journal: Conservation Genetics

Volume: 8 , Pages: 197-207.

DOI: 10.1007/s10592-006-9162-5

Language: English

Full reference: Ruokonen, M., Andersson, A.-C. & Tegelström, H. 2007. Using historical captive stocks in conservation. The case of the lesser white-fronted goose. Conservation Genetics 8: 197-207. https://www.dx.doi.org/10.1007/s10592-006-9162-5

Keywords: Hybrid, Captive, Supplementation, Reintroduction, Lesser white-fronted goose, Anser erythropus

Abstract:

Many captive stocks of economically or otherwise valuable species were established before the decline of the wild population. These stocks are potentially valuable sources of genetic variability, but their taxonomic identity and actual value is often uncertain. We studied the genetics of captive stocks of the threatened lesser white-fronted goose Anser erythropus maintained in Sweden and elsewhere in Europe. Analyses of mtDNA and nuclear microsatellite markers revealed that 36% of the individuals had a hybrid ancestry. Because the parental species are closely related it is unlikely that our analyses detected all hybrid individuals in the material. Because no ancestral polymorphism or introgression was observed in samples of wild populations, it is likely that the observed hybridisation has occurred in captivity. As a consequence of founder effect, drift and hybridisation, captive stocks were genetically differentiated from the wild populations of the lesser white-fronted goose. The high level of genetic diversity in the captive stocks is explained at least partially by hybridisation. The present captive stocks of the lesser white-fronted goose are considered unsuitable for further reintroduction, or supplementation: hybridisation has involved three species, the number of hybrids is high, and all the investigated captive stocks are similarly affected. The results highlight the potential shortcomings of using captive-bred individuals in supplementation and reintroduction projects, when the captive stocks have not been pedigreed and bred according to conservation principles.

Literature type: Scientific

Journal: Conservation Genetics

Volume: 5 , Pages: 501-512.

DOI: 10.1023/B:COGE.0000041019.27119.b4

Language: English

Full reference: Ruokonen, M., Kvist, L., Aarvak, T., Markkola, J., Morozov, V.V., Øien, I.J., Syroechkovsky Jr., E.E., Tolvanen, P. & Lumme, J. 2004. Population genetic structure and conservation of the lesser white-fronted goose (Anser erythropus). Conservation Genetics 5: 501-512. https://www.dx.doi.org/10.1023/B:COGE.0000041019.27119.b4

Keywords: Anser erythropus, lesser white-fronted goose, Palearctic, management unit, population genetic Structure

Abstract:

The lesser white-fronted goose is a sub-Arctic species with a currently fragmented breeding range, which extends from Fennoscandia to easternmost Siberia. The population started to decline at the beginning of the last century and, with a current world population estimate of 25,000 individuals, it is the most threatened of the Palearctic goose species. Of these, only 30–50 pairs breed in Fennoscandia. A fragment of the control region of mtDNA was sequenced from 110 individuals from four breeding, one staging and two wintering areas to study geographic subdivisions and gene flow. Sequences defined 15 mtDNA haplotypes that were assigned to two mtDNA lineages. Both the mtDNA lineages were found from all sampled localities indicating a common ancestry and/or some level of gene flow. Analyses of molecular variance showed significant structuring among populations (φ ST 0.220, P < 0.001). The results presented here together with ecological data indicate that the lesser white-fronted goose is fragmented into three distinctive subpopulations, and thus, the conservation status of the species should be reconsidered.

Literature type: Scientific

Journal: Molecular phylogenetics and evolution

Volume: 23 , Pages: 339-356.

DOI: 10.1016/S1055-7903(02)00019-2

Language: English

Full reference: Donne-Goussé, C., Laudet, V. & Hänni, C. 2002. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Molecular phylogenetics and evolution 23: 339-356. https://www.dx.doi.org/10.1016/S1055-7903(02)00019-2

Keywords: anseriformes, mtDNA, control region, waterfowl

Abstract:

To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, Somateria, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. The Tadornini diverged early on from the Anatinae; then the Mergini and a large group that comprises the Anatini, Aythyini, Cairinini, and two isolated genera, Chenonetta and Marmaronetta, diverged. The phylogeny obtained with the control region appears more robust than the one obtained with mitochondrial protein-coding genes such as ND2 and cytb. This suggests that the CR is a powerful tool for bird phylogeny, not only at a small scale (i.e., relationships between species) but also at the family level. Whereas morphological analysis effectively resolved the split between Anatinae and Anserinae and the existence of some of the clades, the precise composition of the clades are different when morphological and molecular data are compared

Literature type: Thesis

Language: English

Download:

Full reference: Ruokonen, M. 2001. Phylogeography and conservation genetics of the Lesser White-fronted Goose (Anser erythropus). , Acta Universitatis Ouluensis. A Scientiae Rerum Naturalium 360. Faculty of Science, University of Oulu, Finland.

Keywords: Anser, phylogeography, conservation genetics, mitochondrial control region

Abstract:

Analyses of mitochondrial control region sequences were used to infer phylogeny of Anser species, phylogeography of the lesser white-fronted goose, and genetic background of a captive stock. The genetic distances among the Anser species ranged from 0.9 to 5.5% in the complete control region sequences and supported the view of close relatedness of these species. Among the four most closely related species, the bean, pink-footed, white-fronted and lesser white-fronted goose, the branching order is uncertain. The short internal branches and low support for the branching order suggest that the species have diverged recently within short time-intervals. The mtDNA tree obtained is incongruent with the traditional view of the species relationships, but the reasons for this remain to be clarified. Two diverged mitochondrial lineages were found in the lesser white-fronted goose and a refugial origin was proposed. Basal haplotypes are geographically widespread and indicate a recent common ancestry for populations. The derived haplotypes are confined to singular breeding populations and suggest restrictions to the present female gene flow. A shift in the frequency of the mtDNA lineages approximately coincides with a migratory divide in the Taimyr Peninsula. Low mtDNA diversity and significant difference in the haplotype frequencies observed in Fennoscandian subpopulation suggested that it should be considered as a management unit. The fossil record was examined to gain additional information about the colonisation history of the species, but was found to be of limited use. The captive lesser white-fronted goose stock used for reintroduction/restocking was shown to be incompatible with the Fennoscandian wild population. Some captive individuals carried the mtDNA of the white-fronted goose suggesting a hybrid origin. Hybridisation has probably occurred during captive propagation, but to clarify further the extent of introgression, nuclear markers should be applied. The structure and evolution of the control region were studied by comparing complete avian sequences. Saturation was found to occur at pairwise divergences of 10% as shown for third codon positions of the mitochondrial genes previously. In pairwise comparisons of the control region and cytochrome b sequences, the rate of divergence varied among the lineages. Two conserved sequence blocks showed considerable sequence conservation when compared to mammalian sequences.

Literature type: Scientific

Journal: Conservation Genetics

Volume: 1 , Pages: 277-283.

DOI: 10.1023/A:1011509922762

Language: English

Full reference: Ruokonen, M., Kvist, L., Tegelström, H., Lumme, J. 2000. Goose hybrids, captive breeding and restocking of the Fennoscandian populations of the Lesser White-fronted goose (Anser erythropus). Conservation Genetics 1: 277-283. https://www.dx.doi.org/10.1023/A:1011509922762

Keywords: captive stock, hybrids, mitochondrial DNA, reintroduction

Abstract:

The lesser white-fronted goose (Anser erythropus) is the most threatened of the Palearctic goose species with a declining population trend throughout its distributional range. The current estimate of the Fennoscandian subpopulation size is 30–50 breeding pairs, whereas it still numbered more than 10 000 individuals at the beginning of the last century. Reintroduction and restocking have been carried out in Sweden and Finland using captive lesser white-fronted goose stock with unknown origins. We have carried out a study of the genetic composition of captive-bred stock by sequencing a 221 bp hypervariable fragment of the mitochondrial DNA (mtDNA) control region from 15 individuals from the Hailuoto farm, Finland. Two out of the three maternal lineages detected in the captive stock are also present in wild populations. The third maternal lineage among the captive lesser white-fronted geese originates from the closely related greater white-fronted goose (Anser albifrons). None of the investigated wild lesser white-fronted goose individuals carried themtDNA of the greater white-fronted goose. The presence of greater white-fronted goose mtDNA in the lesser white-fronted goose captive stock suggests that hybridization has occurred during captive propagation.

Number of results: 14