Literature type: Scientific
Journal: Ecology and Evolution
Volume: 2021;00 , Pages: 1-14.
DOI: 10.1002/ece3.7310
Language: English
Download:Full reference: Tian, H., Solovyeva, d., Danilov, G., Vartanyan, S., Wen,L., Lei, J., Lu, C., Bridgewater, P., Lei, G. & Zeng, Q. 2021. Combining modern tracking data and historical records improves understanding of the summer habitats of the Eastern Lesser White-fronted Goose Anser erythropus. Ecology and Evolution 2021;00: 1-14. https://www.dx.doi.org/10.1002/ece3.7310
Keywords: Asia, Arctic, eastern population, GPS tracking, Lesser White-fronted Goose Anser erythropus, species distribution modeling, summer range
Abstract:
The Lesser White-fronted Goose (Anser erythropus), smallest of the “gray” geese, is listed as Vulnerable on the IUCN Red List and protected in all range states. There are three populations, with the least studied being the Eastern population, shared between Russia and China. The extreme remoteness of breeding enclaves makes them largely inaccessible to researchers. As a substitute for visitation, remotely tracking birds from wintering grounds allows exploration of their summer range. Over a period of three years, and using highly accurate GPS tracking devices, eleven individuals of A. erythropus were tracked from the key wintering site of China, to summering, and staging sites in northeastern Russia. Data obtained from that tracking, bolstered byground survey and literature records, were used to model the summer distribution of A. erythropus. Although earlier literature describes a patchy summer range, the model suggests a contiguous summer habitat range is possible, although observations to date cannot confirm A. erythropus is present throughout the modeled range. The most suitable habitats are located along the coasts of the Laptev Sea, primarily the Lena Delta, in the Yana-Kolyma Lowland, and smaller lowlands of Chukotka with narrow riparian extensions upstream along major rivers such as the Lena, Indigirka,and Kolyma. The probability of A. erythropus presence is related to areas with altitude less than 500 m with abundant wetlands, especially riparian habitat, and a climate with precipitation of the warmest quarter around 55 mm and mean temperature around 14°C during June-August. Human disturbance also affects site suitability, with a gradual decrease in species presence starting around 160 km from human settlements. Remote tracking of animal species can bridge the knowledge gap required for robust estimation of species distribution patterns in remote areas. Better knowledge of species' distribution is important in understanding the large-scale ecological consequences of rapid global change and establishing conservation management strategies.
Literature type: Scientific
Journal: International journal of environmental research and public health
Volume: 16 , Pages: 1147
Language: English
Download:Full reference: Lei, J., Jia, Y., Zuo, A., Zeng, Q., Shi, L., Zhou, Y., Zhang, H., Lu, C., Lei, G., & Wen, L. 2019. Bird Satellite Tracking Revealed Critical Protection Gaps in East Asian-Australasian Flyway. International journal of environmental research and public health 16: 1147 https://www.dx.doi.org/10.3390/ijerph16071147
Keywords: migration route, stopover, gps tracking, utilization distribution, Croplands, Northeast China Plains,
Abstract:
Most migratory birds depend on stopover sites, which are essential for refueling during migration and affect their population dynamics. In the East Asian–Australasian Flyway (EAAF), however, the stopover ecology of migratory waterfowl is severely under-studied. The knowledge gaps regarding the timing, intensity and duration of stopover site usages prevent the development of effective and full annual cycle conservation strategies for migratory waterfowl in EAAF. In this study, we obtained a total of 33,493 relocations and visualized 33 completed spring migratory paths of five geese species using satellite tracking devices. We delineated 2,192,823 ha as the key stopover sites along the migration routes and found that croplands were the largest land use type within the stopover sites, followed by wetlands and natural grasslands (62.94%, 17.86% and 15.48% respectively). We further identified the conservation gaps by overlapping the stopover sites with the World Database on Protected Areas (PA). The results showed that only 15.63% (or 342,757 ha) of the stopover sites are covered by the current PA network. Our findings fulfil some key knowledge gaps for the conservation of the migratory waterbirds along the EAAF, thus enabling an integrative conservation strategy for migratory water birds in the flyway.
Number of results: 2