Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: Scientific

Journal: Ornis Hungarica

Volume: 28 , Pages: 28–48.

DOI: 10.2478/orhu-2020-0003

Language: English (In English with Hungarian summary)

Download:

Full reference: Zuban, I., Vilkov, V., Kalashnikov, M., Zhadan, K. & Bisseneva, A. 2020. The results of spring monitoring on the status of geese populations in the North Kazakhstan Region during 2011-2018. Ornis Hungarica 28: 28–48. https://www.dx.doi.org/10.2478/orhu-2020-0003

Keywords: monitoring, Kazakhstan, Northern Kazakhstan, spring staging

Abstract:

The article presents the results of monitoring studies on the population dynamics of goose species at one of the largest stopover sites in Northern Kazakhstan during the springs of 2011–2018. Comparative analysis of the phenological phases at the beginning and end of migration over a 50 year period is conducted and changes in timing of migration for the studied groups are established. Data on the number of flocks at various stages of the migration process are presented. Authors revealed characteristics of the distribution of birds in the directions of migration through the region associated with the presence of various migration strategies. Based on the distribution and number of geese in the region for rest and feeding, key zones with characteristics of their natural and anthropogenic state were identified. It has been established that water bodies and large areas have optimal conditions for rest and replenishment of energy reserves for the birds.

Literature type: Report

Language: English

Download:

Full reference: Vougioukalou, M. & Manolopoulos, A. 2020. Monitoring the Lesser White-fronted Goose in Greece 2018 - 2020. , Hellenic Ornithological Society / BirdLife Greece. 13pp.

Keywords: Greece, monitoring, Kerkini Lake, Evros Delta, wintering, space use, telemetry, mr. Blue

Literature type: Scientific

Journal: Nature Conservation Research

Volume: 4

DOI: 10.24189/ncr.2019.003

Language: English

Download:

Full reference: Rozenfeld, S.B., Kirtaev, G.V., Rogova,N.V. & Soloviev, M.Y. 2019. Results of an aerial survey of the western population of Anser erythropus (Anserini) in autumn migration in Russia 2017. Nature Conservation Research 4. https://www.dx.doi.org/10.24189/ncr.2019.003

Keywords: aerial counts, Lesser White-fronted Goose, monitoring, Nenetsky Autonomous Okrug, Yamalo- Nenetsky Autonomous Okrug

Abstract:

The global population of Anser erythropus has rapidly declined since the middle of the 20th century. The decline in numbers has been accompanied by the fragmentation of the breeding range and is considered as «continuing affecting all populations, giving rise to fears that the species may go extinct». Overhunting, poaching and habitat loss are considered to be the main threats. The official estimate of the dimension of the decline is in the range of 30% to 49% between 1998 and 2008. Monitoring and the prospection of new areas are needed for the future conservation of this species. The eastern part of the Nenetsky Autonomous Okrug, the Baydaratskaya Bay and the Lower Ob (Dvuobye) are important territories for the Western main population of Anser erythropus on a flyway scale. Moving along the coast to the east, Anser erythropus can stay for a long time on the Barents Sea Coast, from where they fly over the Baydaratskaya Bay to the Dvuobye. We made aerial surveys and identified key sites and the main threats for Anser erythropus on this part of the flyway. According to our data, the numbers of the Western main population of Anser erythropus amount to 48 580 ± 2820 individuals after the breeding season, i.e. higher than the previous estimates made in autumn in Northern Kazakhstan. The key sites of Anser erythropus in this part of the flyway were identified.

Literature type: Report

Language: English

Download:

Full reference: Vougioukalou, M. (compiler) 2018. Monitoring the Lesser White-fronted Goose in Greece 2017 - 2018. , Hellenic Ornithological Society / BirdLife Greece. 33 pp.

Keywords: monitoring, Greece, numbers

Literature type: General

Journal: Vår Fuglefauna

Volume: 41 , Pages: 132-137.

Language: Norwegian (In Norwegian)

Download:

Full reference: Øien, I.J. & Aarvak, T. 2018. Fortsatt mange utfordringer for dverggjessene [Still many challenges for Lesser White-fronted Geese], Vår Fuglefauna: 41, 132-137.

Keywords: monitoring, threats, migration, Norway, Fennoscandia

Literature type: General

Journal: Goose Bulletine

Volume: 22 , Pages: 17-24

Language: English

Full reference: Rozenfeld, S. & Kirtaev, G. 2017. Monitoring and identification of key sites of Lesser White-fronted goose (Anser erythropus) in Baydaratskaya Bay and adjacent territories. Goose Bulletine: 22, 17-24

Keywords: Russia, survey, Yamal Peninsula, Baydaratskaya Bay, ultra-light hydroplane, arial survey,

Literature type: Report

Language: English

Full reference: Bragin, E. 2017. Technical report on the project "safe flyways: monitoring threatened waterbirds along Central Asian site network" supported by CMS Small Grant Program. , NGO Naurzum, report 25 pp.

Keywords: Kazakhstan, counts, 2015, Kustanay

Literature type: Report

Language: English

Download:

Full reference: Morozov, V.V., Øien, I.J. & Aarvak, T. 2016. Monitoring and satellite tracking of Lesser White-fronted Geese from the Russian European tundra in Russia in 2015. , NOF-BirdLife Norway - Report 2-2016. 13pp.

Keywords: Polar Urals, Bolshezemelskaya Tundra, Bolshaya Rogovaya River, Kazakhstan, Uzbekistan, Turkmenistan, Russia, production

Abstract:

Fieldwork was carried out between 6th June and 10th August 2015 at the western macro-slope of the Polar Urals and the eastern Bolshezemelskaya Tundra, Russia. In the Bolshaya Rogovaya River basin area, only one LWfG pair with five juveniles was located. However, the numbers of Bean Geese were high, with 92 adults and at least 58 juveniles in the same area. In the Polar Urals, Lesser White-fronted Geese were found on the rivers or watershed lakes in June, but repeated observations carried out in July and early August did not confirm the presence of LWfG, but also here many broods of Bean Goose were observed. Altogether, three broods of LWfG were found in one flock. One adult male was caught by a hoop net during fieldwork and equipped with a solar powered GPS satellite transmitter. This male LWfG migrated southwards along the Ob river valley, through Kazakhstan, but instead of crossing over to the western side of the Caspian Sea as expected, he was tracked to Uzbekistan and Turkmenistan. This is the first time that a Lesser White-fronted Goose has been tracked to this probably very important wintering area which is situated in the border area between Uzbekistan and Turkmenistan. By 7th January 2016 the bird was still alive and with a functioning transmitter.

Literature type: Report

Language: English

Download:

Full reference: Lampila, P. & Eskelin, T. 2015. Monitoring of Lesser White-fronted Geese (Anser erythropus) in Northern Iran. , AEWA Lesser White-fronted Goose International Working Group Report Series No. 4. Bonn, Germany.

Keywords: Iran, winter survey

Literature type: Scientific

Journal: Science of the Total Environment

Volume: 527–528 , Pages: 279–286.

DOI: 10.1016/j.scitotenv.2015.04.083

Language: English

Full reference: Aloupi, M., Kazantzidis, S., Akriotis, T., Bantikou, E. & Hatzidaki, V.-O. 2015. Lesser White-fronted (Anser erythropus) and Greater White-fronted (A. albifrons) Geese wintering in Greek wetlands are not threatened by Pb through shot ingestion. Science of the Total Environment 527–528: 279–286. https://www.dx.doi.org/10.1016/j.scitotenv.2015.04.083

Keywords: Non-invasive monitoring, Soil ingestion, Pb–Al relationship, Anser albifrons, Anser erythropus, Lead shot, Greece, hunting,

Abstract:

Fecal lead (Pb) levels were investigated in the threatened European population of the Lesser White-fronted Goose (LWfG, Anser erythropus) and of the non-threatened Greater White-fronted Goose (GWfG, Anser albifrons) wintering in two wetland areas in northern Greece in order to assess the potential risk from Pb exposure. Fecal, soil and food plant samples were analyzed. Levels of Pb were normalized using Al concentrations in order to sep-arate the effect of possible ingestion of Pb shot from that of soil or sediment accidentally ingested with food. All concentrations are expressed on a dry weight basis. Geometric means of Pb content in the feces of LWfG were 6.24 mg/kg at Evros Delta and 7.34 mg/kg at Lake Kerkini (maximum values of 28.61 mg/kg and 36.68 mg/kg, re-spectively); for fecal samples of GWfG geometric means were 2.39 mg/kg at Evros Delta and 6.90 mg/kg at Kerkini (corresponding maximum values of 25.09 mg/kg and 42.26 mg/kg). Soil Pb was in the range of 5.2–60.2 mg/kg (geometric mean = 22.6 mg/kg) for the Evros Delta and between 13.4 and 64.9 mg/kg (geometric mean = 28.1 mg/kg) for Kerkini. A general linear model fitted to the data showed that Pb levels were very closely dependent on Al levels in the feces from both species and at both sites indicating soil or sediment were the only significant source of Pb; species and site, as well as their interaction, were not statistically significant factors. For both species and at both sites exposure to Pb was evidently very mild and the observed levels of Pb were well below the proposed thresholds for lethal or sublethal effects of Pb poisoning. Soil ingestion appeared to gradually increase from October to De-cember for LWfG at Kerkini, corresponding to a gradual depletion of their food source.

Number of results: 131