Literature type: Thesis
Language: English
Full reference: Markkola, J. 2022. Ecology and conservation of the Lesser White-fronted Goose Anser erythropus. , PhD thesis, Acta Universitatis Ouluensis. A Scientiae Rerum Naturalium 770. Faculty of Science, University of Oulu, Finland.
Keywords: spring arrival, Anser erythropus, Anser fabalis, breeding schedule, habitat, diet selection, meadow management, population genetic structure, Finland
Abstract:
I studied the rare and threatened lesser white-fronted goose (Anser erythropus), abbreviated LWfG in 1989–1996 in sub-arctic Finnish Lapland (I). The studied subpopulation consisted of 2–15 breeding pairs annually. A total of 30 broods were observed with an average of 2.9 goslings per brood. The 1st year survival of tagged 10 geese was low. Satellite locations, recoveries and resightings were received from NW Russia, Kazakhstan and the Azov Sea area. Cold spells had a negative, and the sum of effective temperatures by 5 July a positive influence on reproduction. Habitat selection (II) was studied in the same area. LWfG preferred the vicinity of water, flat close-range landscape, low forest height and intermediate relative altitudes. LWfG aggregated in the vicinity of conspecifics within the preferred habitats. The averaged RSF model assigned observation and random points correctly with 83.4% success. Locations of historical observations of LWfG matched the predicted distribution of breeding sites. (III) Spring migration patterns on the Bothnian Bay coast of LWfG were examined in 1907–1916 and 1949–2014 and the taiga bean goose (Anser fabalis fabalis) in 1975–2014. Arrival of the short-distance migrant A. fabalis advanced more and earlier than the long-distance migrant A. erythropus, 10.9 days since late 1980’s vs. 5.3 days since the beginning of the 2000’s. In the LWfG, the best model for explaining variation in timing included global and local temperatures, in A. fabalis global and local temperatures and winter NAO. Increasing global temperatures seem to explain trends in both. In the spring staging places of the Bothnian Bay almost all dietary items of the LWfG were Monocotyledons, mostly grasses growing in extensive sea-shore meadows (IV). Only Phragmites, Festuca and possibly Triglochin palustris were preferred. Lesser White-fronts preferred extensive natural meadows. Mowing and grazing benefit the restoration of habitats. Genetic structuring of the LWfG was examined in its whole distribution area from Fennoscandia to East Asia (V). A fragment of the control region of mtDNA was sequenced from 110 individuals. 15 mtDNA haplotypes were assigned to two mtDNA lineages. Molecular variance showed significant structuring among populations: the main western in north-western Russia – Central Siberia, the main eastern in East Asia and the Nordic one, which earns a status as an independent management unit.
Literature type: Scientific
Journal: Land
Volume: 11 , Pages: 1946
DOI: 10.3390/land11111946
Language: English
Download:Full reference: Fan, R., Lei, J., Wu, E., Lu, C., Jia, Y., Zeng, Q. & Lei, G. 2022. Species distribution modelling of the breeding site distribution gaps of Lesser White-fronted Goose in Siberia under climate change. Land 11: 1946 https://www.dx.doi.org/10.3390/land11111946
Keywords: climate change, breeding sites, conservation gaps, species habitat conservation, Siberia, Russia
Abstract:
Climate change has become an important cause of the loss of bird habitat and changes in bird migration and reproduction. The lesser white-fronted goose (Anser erythropus) has a wide range of migratory habits and is listed as vulnerable on the IUCN (International Union for Conservation of Nature) Red List. In this study, the distribution of suitable breeding grounds for the lesser white-fronted goose was assessed in Siberia, Russia, using a combination of satellite tracking and climate change data. The characteristics of the distribution of suitable breeding sites under different climate scenarios in the future were predicted using the Maxent model, and protection gaps were assessed. The analysis showed that under the background of future climate change, temperature and precipitation will be the main climatic factors affecting the distribution of breeding grounds, and the area associated with suitable breeding habitats will present a decreasing trend. Areas listed as an optimal habitat only accounted for 3.22% of the protected distribution; however, 1,029,386.341 km2 of optimal habitat was observed outside the protected area. Obtaining species distribution data is important for developing habitat protection in remote areas. The results presented here can provide a basis for developing species-specific habitat management strategies and indicate that additional attention should be focused on protecting open spaces.
Literature type: Scientific
Journal: Ecology and Evolution
Volume: 2021;00 , Pages: 1-14.
DOI: 10.1002/ece3.7310
Language: English
Download:Full reference: Tian, H., Solovyeva, d., Danilov, G., Vartanyan, S., Wen,L., Lei, J., Lu, C., Bridgewater, P., Lei, G. & Zeng, Q. 2021. Combining modern tracking data and historical records improves understanding of the summer habitats of the Eastern Lesser White-fronted Goose Anser erythropus. Ecology and Evolution 2021;00: 1-14. https://www.dx.doi.org/10.1002/ece3.7310
Keywords: Asia, Arctic, eastern population, GPS tracking, Lesser White-fronted Goose Anser erythropus, species distribution modeling, summer range
Abstract:
The Lesser White-fronted Goose (Anser erythropus), smallest of the “gray” geese, is listed as Vulnerable on the IUCN Red List and protected in all range states. There are three populations, with the least studied being the Eastern population, shared between Russia and China. The extreme remoteness of breeding enclaves makes them largely inaccessible to researchers. As a substitute for visitation, remotely tracking birds from wintering grounds allows exploration of their summer range. Over a period of three years, and using highly accurate GPS tracking devices, eleven individuals of A. erythropus were tracked from the key wintering site of China, to summering, and staging sites in northeastern Russia. Data obtained from that tracking, bolstered byground survey and literature records, were used to model the summer distribution of A. erythropus. Although earlier literature describes a patchy summer range, the model suggests a contiguous summer habitat range is possible, although observations to date cannot confirm A. erythropus is present throughout the modeled range. The most suitable habitats are located along the coasts of the Laptev Sea, primarily the Lena Delta, in the Yana-Kolyma Lowland, and smaller lowlands of Chukotka with narrow riparian extensions upstream along major rivers such as the Lena, Indigirka,and Kolyma. The probability of A. erythropus presence is related to areas with altitude less than 500 m with abundant wetlands, especially riparian habitat, and a climate with precipitation of the warmest quarter around 55 mm and mean temperature around 14°C during June-August. Human disturbance also affects site suitability, with a gradual decrease in species presence starting around 160 km from human settlements. Remote tracking of animal species can bridge the knowledge gap required for robust estimation of species distribution patterns in remote areas. Better knowledge of species' distribution is important in understanding the large-scale ecological consequences of rapid global change and establishing conservation management strategies.
Literature type: Scientific
Journal: Ecology and evolution
Volume: 10 , Pages: 5281–5292
DOI: 10.1002/ece3.6272
Language: English
Download:Full reference: Zhang, P., Zou, Y. A., Xie, Y., Zhang, S., Chen, X., Li, F., Deng, Z., Zhang, H., & Tu, W. 2020. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecology and evolution 10: 5281–5292 https://www.dx.doi.org/10.1002/ece3.6272
Keywords: Dongting Lake, China, diet, food shortage, habitat selection
Abstract:
East Dongting Lake is a Ramsar site and a particularly important wintering ground for herbivorous geese along the East Asian-Australasian Flyway. The operation of the Three Gorges Dam has changed the water regime and has a significant impact on wetland ecosystems downstream. We studied the responses of two sympatric herbivorous goose species, the Lesser white-fronted goose Anser erythropus and Bean goose Anser fabalis, to habitat change by investigating their food conditions, habitat selection, and diet composition in the wintering periods of 2016/2017 and 2017/2018, which had early and late water recession, respectively. It was expected that the contrasting water regimes would result in different food conditions and geese responses. The results showed that the food quality and quantity differed significantly between winters. As responses to the high-quantity/low-quality food during 2016/2017, more geese switched to feeding on mudflat and exploited plants such as dicotyledons and moss. The tall swards of Carex spp. (dominant plants in the meadow) that developed during the first growing season decreased the food accessibility during the second growing season and hindered the exploitation of newly generated shoots by the geese, which was further confirmed by our clipping control experiment. Nearly all the geese chose to feed on meadow, and Carex spp. made up the majority of their diet in 2017/2018 when there was more low-quantity/high-quality food. Compared with the globally vulnerable Lesser white-fronted geese, the larger-sized Bean geese seemed to be less susceptible to winter food shortages and exhibited more stable responses. We concluded that the food quality-quantity condition was the external factor influencing the geese responses, while morphological and physiological traits could be the internal factors causing different responses between the two species. This study enhanced the understanding of the influence that habitat change exerts on herbivorous geese in their wintering site in the context of the Three Gorges Dam operation. We suggested that regulating hydrological regime was important in terms of wetland management and species conservation.
Literature type: Scientific
Journal: Ecology and Evolution
Volume: 10 , Pages: 5281-5292.
DOI: 10.1002/ece3.6272
Language: English
Download:Full reference: Pingyang, Z., Ye-ai, Z., Yonghong, X., Siqi, Z., Xinsheng, C., Feng, L., Zhengmiao, D., Hong, Z. & Wei, T. 2020. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecology and Evolution 10: 5281-5292. https://www.dx.doi.org/10.1002/ece3.6272
Keywords: Bean goose, diet, Dongting Lake, wetland, food shortage, habitat selection, China
Abstract:
East Dongting Lake is a Ramsar site and a particularly important wintering ground for herbivorous geese along the East Asian‐Australasian Flyway. The operation of the Three Gorges Dam has changed the water regime and has a significant impact on wetland ecosystems downstream. We studied the responses of two sympatric herbivorous goose species, the Lesser white‐fronted goose Anser erythropus and Bean goose Anser fabalis, to habitat change by investigating their food conditions, habitat selection, and diet composition in the wintering periods of 2016/2017 and 2017/2018, which had early and late water recession, respectively. It was expected that the contrasting water regimes would result in different food conditions and geese responses. The results showed that the food quality and quantity differed significantly between winters. As responses to the high‐quantity/low‐quality food during 2016/2017, more geese switched to feeding on mudflat and exploited plants such as dicotyledons and moss. The tall swards of Carex spp. (dominant plants in the meadow) that developed during the first growing season decreased the food accessibility during the second growing season and hindered the exploitation of newly generated shoots by the geese, which was further confirmed by our clipping control experiment. Nearly all the geese chose to feed on meadow, and Carex spp. made up the majority of their diet in 2017/2018 when there was more low‐quantity/high‐quality food. Compared with the globally vulnerable Lesser white‐fronted geese, the larger‐sized Bean geese seemed to be less susceptible to winter food shortages and exhibited more stable responses. We concluded that the food quality–quantity condition was the external factor influencing the geese responses, while morphological and physiological traits could be the internal factors causing different responses between the two species. This study enhanced the understanding of the influence that habitat change exerts on herbivorous geese in their wintering site in the context of the Three Gorges Dam operation. We suggested that regulating hydrological regime was important in terms of wetland management and species conservation.
Literature type: Scientific
Journal: Freshwater biology
Volume: 64 , Pages: 1183-1195.
DOI: 10.1111/fwb.13294
Language: English
Full reference: Jialin, L., Yifei, J., Yuyu, W., Guangchun, L., Cai, L., Neil, S., & Li, W. 2019. Behavioural plasticity and trophic niche shift: How wintering geese respond to habitat alteration. Freshwater biology 64: 1183-1195. https://www.dx.doi.org/10.1111/fwb.13294
Keywords: behavioural response, hydrological regimes, trophic niche width, trophic position, wintering habitats, China
Abstract:
1. The accelerated rate of human-induced environmental change poses a significant challenge for wildlife. The ability of wild animals to adapt to environmental changes has important consequences for their fitness, survival, and reproduction. Behavioural flexibility, an immediate adjustment of behaviour in response to environmental variability, may be particularly important for coping with anthropogenic change. The main aim of this study was to quantify the response of two wintering goose species (bean goose Anser fabalis and lesser white-fronted goose Anser erythropus) to poor habitat condition at population level by studying foraging behaviour. In addition, we tested whether behavioural plasticity could alter trophic niche. 2. We characterised foraging behaviours and calculated daily home range (HR) of the geese using global positioning system tracking data. We calculated standard ellipse areas to quantify niche width using the δ13C and δ15N values of individual geese. We linked behavioural plasticity with habitat quality using ANCOVA (analysis of covariance) models. We also tested the correlation between standard ellipse areas and HR using ANCOVA model. 3. We found significant differences in geese foraging behaviours between years in their daily foraging area, travel distance and speed, and turning angle. Specifically, the birds increased their foraging area to satisfy their daily energy intake requirement in response to poor habitat conditions. They flew more sinuously and travelled faster and longer distances on a daily basis. For the endangered lesser white-fronted goose, all behaviour variables were associated with habitat quality. For bean goose, only HR and turning angle were correlated with habitat quality. The birds, especially the lesser white-fronted goose, may have had a higher trophic position under poor conditions. 4. Our findings indicate that wintering geese showed a high degree of behavioural plasticity. However, more active foraging behaviours under poor habitat condition did not lead to a broader trophic niche. Habitat availability could be responsible to the divergent responses of foraging HR and isotopic niche to human-induced environmental change. Therefore, maintaining natural hydrological regimes during the critical period (i.e. September–November) to ensure that quality food
Literature type: Scientific
Journal: Ibis
Volume: 160 , Pages: 703-705.
DOI: 10.1111/ibi.12605
Language: English
Full reference: Zhao, Q, Wang, X., Cao, L. & Fox, A.D. 2018. Why Chinese wintering geese hesitate to exploit farmland. Ibis 160: 703-705. https://www.dx.doi.org/10.1111/ibi.12605
Keywords: China, farmland feeding, habitat shift, human, disturbance, Yangtze River, habitat loss, population trends
Literature type: Scientific
Journal: Scientific reports
Volume: 8 , Pages: 2014
DOI: 10.1038/s41598-017-18594-2
Language: English
Download:Full reference: Liang, J., Gao, X., Zeng, G., Hua, S., Zhong, M., Li, X., & Li, X. 2018. Coupling Modern Portfolio Theory and Marxan enhances the efficiency of Lesser White-fronted Goose's (Anser erythropus) habitat conservation. Scientific reports 8: 2014 https://www.dx.doi.org/10.1038/s41598-017-18594-2
Keywords: Climate change, Biodiversity, ecological modelling, wetlands ecology, China, Yangtze River
Abstract:
Climate change and human activities cause uncertain changes to species biodiversity by altering their habitat. The uncertainty of climate change requires planners to balance the benefit and cost of making conservation plan. Here optimal protection approach for Lesser White-fronted Goose (LWfG) by coupling Modern Portfolio Theory (MPT) and Marxan selection were proposed. MPT was used to provide suggested weights of investment for protected area (PA) and reduce the influence of climatic uncertainty, while Marxan was utilized to choose a series of specific locations for PA. We argued that through combining these two commonly used techniques with the conservation plan, including assets allocation and PA chosing, the efficiency of rare bird's protection would be enhanced. In MPT analyses, the uncertainty of conservation-outcome can be reduced while conservation effort was allocated in Hunan, Jiangxi and Yangtze River delta. In Marxan model, the optimal location for habitat restorations based on existing nature reserve was identified. Clear priorities for the location and allocation of assets could be provided based on this research, and it could help decision makers to build conservation strategy for LWfG.
Literature type: Scientific
Journal: Scientific reports
Volume: 8 , Pages: 214.
DOI: 10.1038/s41598-017-18594-2
Language: English
Download:Full reference: Jie, L., Xiang, G., Guangming, Z., Shanshan, H., Minzhou, Z., Xiaodong, L., & Xin, L. 2018. Coupling modern portfolio theory and marxan enhances the efficiency of Lesser White-fronted Goose’s (Anser erythropus) habitat conservation. Scientific reports 8: 214. https://www.dx.doi.org/10.1038/s41598-017-18594-2
Keywords: ecological modelling, climate change, conservation, habitat restoration, Jiangxi, Yangtze, China
Abstract:
Climate change and human activities cause uncertain changes to species biodiversity by altering their habitat. The uncertainty of climate change requires planners to balance the benefit and cost of making conservation plan. Here optimal protection approach for Lesser White-fronted Goose (LWfG) by coupling Modern Portfolio Theory (MPT) and Marxan selection were proposed. MPT was used to provide suggested weights of investment for protected area (PA) and reduce the influence of climatic uncertainty, while Marxan was utilized to choose a series of specific locations for PA. We argued that through combining these two commonly used techniques with the conservation plan, including assets allocation and PA chosing, the efficiency of rare bird’s protection would be enhanced. In MPT analyses, the uncertainty of conservation-outcome can be reduced while conservation effort was allocated in Hunan, Jiangxi and Yangtze River delta. In Marxan model, the optimal location for habitat restorations based on existing nature reserve was identified. Clear priorities for the location and allocation of assets could be provided based on this research, and it could help decision makers to build conservation strategy for LWfG.
Literature type: Scientific
Journal: Biology Bulletin
Volume: 44 , Pages: 960–979
DOI: 10.1134/S1062359017080143
Download:Full reference: Rozenfeld, S. B., Soloviev, M.Yu., Kirtaev, G.V., Rogova, N.V. & Ivanov, M.N. 2017. Estimation of the Spatial and Habitat Distribution of Anseriformes in the Yamal-Nenets and Khanty-Mansi Autonomous Regions (Experience from the Use of Ultralight Aircrafts). Biology Bulletin 44: 960–979 https://www.dx.doi.org/10.1134/S1062359017080143
Keywords: migration, monitoring, aerial counts, Russia, western Siberia, Yamal
Abstract:
In Russia, the conservation of anseriformes is possible through the creation of temporary huntingfree zones during hunting season, especially in spring. A justification for creating such zones and outlining their boundaries (by analogy with the experience derived from the countries on North America) each season must be based on data on annual waterfowl monitoring. The present paper describes census experience drawn from the use of ultralight aviation for further delineating the key staging sites of waterfowl in western Siberia. To refine the duration of monitoring, observation data were combined with those derived from geese equipped with GSM-GPS transmitters. In the spring and autumn of 2012–2014, we covered over 50000 km of aerial surveys of 25 waterfowl species. A new method is advanced for assessing their numbers based on visual observations, flock photography, and modern statistics. We estimated the species densities in 16 habitat types delineated on the basis of Landsat imagery. In terms of this, a system is proposed for extrapolating the survey data on 25 waterfowl species onto model sites in western Siberia. Drops in the numbers of several mass game species were noted. Based on an evaluation of the habitat quality, ten waterfowl hunting-free zones were suggested and delineated. A GIS project was launched that incorporated the main migration routes, boundaries of the key sites, places of mass bird aggregations, and sites for the observation of rare, Red Data Book. A program of long-term monitoring and sustainable use of waterfowl in the study region is offered. Such an approach must also be applied to other regions of Russia.
Number of results: 21