Portal to the Lesser White-fronted Goose

- by the Fennoscandian Lesser White-fronted Goose project

Literature type: Report

Language: English

Download:

Full reference: Vougioukalou, M. & Manolopoulos, A. 2020. Monitoring the Lesser White-fronted Goose in Greece 2018 - 2020. , Hellenic Ornithological Society / BirdLife Greece. 13pp.

Keywords: Greece, monitoring, Kerkini Lake, Evros Delta, wintering, space use, telemetry, mr. Blue

Literature type: Scientific

Journal: Freshwater biology

Volume: 64 , Pages: 1183-1195.

DOI: 10.1111/fwb.13294

Language: English

Full reference: Jialin, L., Yifei, J., Yuyu, W., Guangchun, L., Cai, L., Neil, S., & Li, W. 2019. Behavioural plasticity and trophic niche shift: How wintering geese respond to habitat alteration. Freshwater biology 64: 1183-1195. https://www.dx.doi.org/10.1111/fwb.13294

Keywords: behavioural response, hydrological regimes, trophic niche width, trophic position, wintering habitats, China

Abstract:

1. The accelerated rate of human-induced environmental change poses a significant challenge for wildlife. The ability of wild animals to adapt to environmental changes has important consequences for their fitness, survival, and reproduction. Behavioural flexibility, an immediate adjustment of behaviour in response to environmental variability, may be particularly important for coping with anthropogenic change. The main aim of this study was to quantify the response of two wintering goose species (bean goose Anser fabalis and lesser white-fronted goose Anser erythropus) to poor habitat condition at population level by studying foraging behaviour. In addition, we tested whether behavioural plasticity could alter trophic niche. 2. We characterised foraging behaviours and calculated daily home range (HR) of the geese using global positioning system tracking data. We calculated standard ellipse areas to quantify niche width using the δ13C and δ15N values of individual geese. We linked behavioural plasticity with habitat quality using ANCOVA (analysis of covariance) models. We also tested the correlation between standard ellipse areas and HR using ANCOVA model. 3. We found significant differences in geese foraging behaviours between years in their daily foraging area, travel distance and speed, and turning angle. Specifically, the birds increased their foraging area to satisfy their daily energy intake requirement in response to poor habitat conditions. They flew more sinuously and travelled faster and longer distances on a daily basis. For the endangered lesser white-fronted goose, all behaviour variables were associated with habitat quality. For bean goose, only HR and turning angle were correlated with habitat quality. The birds, especially the lesser white-fronted goose, may have had a higher trophic position under poor conditions. 4. Our findings indicate that wintering geese showed a high degree of behavioural plasticity. However, more active foraging behaviours under poor habitat condition did not lead to a broader trophic niche. Habitat availability could be responsible to the divergent responses of foraging HR and isotopic niche to human-induced environmental change. Therefore, maintaining natural hydrological regimes during the critical period (i.e. September–November) to ensure that quality food

Literature type: Scientific

Journal: Ibis

Volume: 160 , Pages: 703-705.

DOI: 10.1111/ibi.12605

Language: English

Full reference: Zhao, Q, Wang, X., Cao, L. & Fox, A.D. 2018. Why Chinese wintering geese hesitate to exploit farmland. Ibis 160: 703-705. https://www.dx.doi.org/10.1111/ibi.12605

Keywords: China, farmland feeding, habitat shift, human, disturbance, Yangtze River, habitat loss, population trends

Literature type: Report

Language: English

Download:

Full reference: Vougioukalou, M., Kazantzidis, S. & Aarvak, T. 2017. Safeguarding the Lesser White-fronted Goose Fennoscandian population at key staging and wintering sites within the European flyway. , Special publication. LIFE+10 NAT/GR/000638 Project, HOS/BirdLife Greece, HAOD/Forest Research Institute, NOF/BirdLife Norway report no. 2017-2. 164p.

Keywords: EU-Life, conservation, Norway, Greece, Finland, Hungary, Estonia, Lithuania,

Literature type: Scientific

Journal: Bird Conservation International

Volume: 27 , Pages: 355-370.

DOI: 10.1017/S0959270916000393

Language: English

Full reference: Karmiris, I., Kazantzidis, S., Platis, P. & Papachristou, T.G. 2017. Diet selection by wintering Lesser White-fronted Goose Anser erythropus and the role of food availability. Bird Conservation International 27: 355-370. https://www.dx.doi.org/10.1017/S0959270916000393

Keywords: diet selection, food availability, diet composition, droppings, protein, Kerkini Lake, Echinochloa crus-galli, Cyperus esculentus, Scirpus lacustris, Ranunculus sceleratus

Abstract:

The Fennoscandian population of the Lesser White-fronted Goose Anser erythropus (LWfG) is on the verge of extinction and migrates from northern Fennoscandia to Greece on a regular seasonal basis. For the first time, diet selection was investigated during two years at Kerkini Lake, a wintering site in Greece. The relative use of LWfG’s feeding habitats was systematically recorded by visual observations of the LWfG flocks. Food availability was measured by the relative cover of available vegetation types while the diet composition was determined by the microhistological analysis of droppings. In addition, we determined crude protein, neutral detergent fibre, acid detergent fibre and acid detergent lignin content of the most preferred plant species by LWfG and all vegetation categories that contributed to LWfG diet in the middle of the duration of their stay at Kerkini Lake and after their departure from the lake. LWfG feeding habitat was exclusively marshy grassland in water less than 5 cm deep up to 300–400 m away from the shore. LWfG selected a diverse number of plant species (33), however, grass made up the 58% of their diets. The most preferred plant species were Echinochloa crus-galli, Cyperus esculentus, Scirpus lacustris and Ranunculus sceleratus. LWfG departed from Kerkini Lake in mid-December to the Evros Delta (Thrace, eastern Greece), when either food availability falls in very low levels or flooding occurred in their main feeding habitat. Consequently, as long as food and habitat resources are available for LWfG, it is very likely that the birds will winter mainly at Kerkini Lake and not at the Evros Delta, which will contribute to further minimisation of the theoretical risk of accidental shooting of LWfG at the latter wintering habitat. Thus, future conservation actions should primarily focus on the grassland improvement at Kerkini Lake enhancing the availability of food resources for LWfG (mainly grasses) and the protection of the feeding habitat from flooding.

Literature type: Report

Language: English

Download:

Full reference: Morozov, V.V, Sultanov, E. & Mammadov, A. 2016. Survey of Lesser White-fronted Geese in Nakhchivan, Azerbaijan, in January 2015. , NOF-BirdLife Norway - Report 3-2016. 12pp.

Keywords: Occurrence, survey, Azerbaijan, Iran, Nakhchivan, wintering

Abstract:

We carried out a field survey of wintering Lesser White-fronted Geese in the Aras water reservoir in the Nakhchivan Autonomic Republic in the period 20th-24th January 2015. We also surveyed the adjoining flood-plain area of the Aras River valley within Sadarak district near the border of Iran and Turkey in the same period. Only four small flocks of Lesser White-fronted Geese were located, of which the largest being 80 individuals. These observations together with tracking and location data from satellite transmitter tagged birds proves that the whole area of the Aras River valley from the border of Turkey to the Aras reservoir dam, serves as a wintering ground for the species. Considering their high importance, the wetlands of the Aras reservoir and the Sadarak district should be designated as a strictly protected area.The survey also covered numbers and distribution of other waterbird species in the area. Within the Azerbaijan part, more than 25000 individuals of waterfowl and shorebirds overwinter, which qualifies this important area to the list of important RAMSAR wetlands.

Literature type: Scientific

Journal: Ecological Engineering

Volume: 88 , Pages: 90–98.

DOI: 10.1016/j.ecoleng.2015.12.009

Language: English

Full reference: Guan, L., Lei, J., Zuo, A., Zhang, H., Lei, G. & Wen, L. 2016. Optimizing the timing of water level recession for conservation of wintering geese in Dongting Lake, China. Ecological Engineering 88: 90–98. https://www.dx.doi.org/10.1016/j.ecoleng.2015.12.009

Keywords: Habitat quality, Water recession, Generalised linear mixed modelling (GLMM), Three Gorges Dam, (TGD), Enhanced vegetation index (EVI), Geese, China, Dong Tinge lake, wintering

Abstract:

Habitat suitability and selection are key concepts in wildlife management, especially in protection of critical habitat and conservation of sensitive and endangered populations. In recent years, many approaches have been developed to link habitat suitability with animal occurrence and abundance. These approaches typically involve identifying existing habitats, defining habitat quality metrics, and estimating the association between animal occurrence/abundance and measured habitat metrics. In this study, we first tested whether we could measure habitat quality at Dongting Lake, China, one of the most important migratory waterbird wintering sites in the East Asian Flyway, for a group of Anatidae using metrics derived from the freely available multi-temporal MODIS vegetation index. The results showed that goose counts could be sufficiently modelled using mean winter season EVI (enhanced vegetation index) and habitat size computed from EVI time series and topographic wetness index (TWI). We then quantified the relationships between hydrological regimes and the habitat quality metrics. Our findings suggested that the timing of optimal water draw down should be early to mid October to ensure quality food sources for the wintering geese in Dongting Lake. The results have direct conservation implications as water recession timing is highly manageable through water flow regulation.

Literature type: Report

Language: English

Download:

Full reference: Lampila, P. & Eskelin, T. 2015. Monitoring of Lesser White-fronted Geese (Anser erythropus) in Northern Iran. , AEWA Lesser White-fronted Goose International Working Group Report Series No. 4. Bonn, Germany.

Keywords: Iran, winter survey

Literature type: Scientific

Journal: Science of the Total Environment

Volume: 527–528 , Pages: 279–286.

DOI: 10.1016/j.scitotenv.2015.04.083

Language: English

Full reference: Aloupi, M., Kazantzidis, S., Akriotis, T., Bantikou, E. & Hatzidaki, V.-O. 2015. Lesser White-fronted (Anser erythropus) and Greater White-fronted (A. albifrons) Geese wintering in Greek wetlands are not threatened by Pb through shot ingestion. Science of the Total Environment 527–528: 279–286. https://www.dx.doi.org/10.1016/j.scitotenv.2015.04.083

Keywords: Non-invasive monitoring, Soil ingestion, Pb–Al relationship, Anser albifrons, Anser erythropus, Lead shot, Greece, hunting,

Abstract:

Fecal lead (Pb) levels were investigated in the threatened European population of the Lesser White-fronted Goose (LWfG, Anser erythropus) and of the non-threatened Greater White-fronted Goose (GWfG, Anser albifrons) wintering in two wetland areas in northern Greece in order to assess the potential risk from Pb exposure. Fecal, soil and food plant samples were analyzed. Levels of Pb were normalized using Al concentrations in order to sep-arate the effect of possible ingestion of Pb shot from that of soil or sediment accidentally ingested with food. All concentrations are expressed on a dry weight basis. Geometric means of Pb content in the feces of LWfG were 6.24 mg/kg at Evros Delta and 7.34 mg/kg at Lake Kerkini (maximum values of 28.61 mg/kg and 36.68 mg/kg, re-spectively); for fecal samples of GWfG geometric means were 2.39 mg/kg at Evros Delta and 6.90 mg/kg at Kerkini (corresponding maximum values of 25.09 mg/kg and 42.26 mg/kg). Soil Pb was in the range of 5.2–60.2 mg/kg (geometric mean = 22.6 mg/kg) for the Evros Delta and between 13.4 and 64.9 mg/kg (geometric mean = 28.1 mg/kg) for Kerkini. A general linear model fitted to the data showed that Pb levels were very closely dependent on Al levels in the feces from both species and at both sites indicating soil or sediment were the only significant source of Pb; species and site, as well as their interaction, were not statistically significant factors. For both species and at both sites exposure to Pb was evidently very mild and the observed levels of Pb were well below the proposed thresholds for lethal or sublethal effects of Pb poisoning. Soil ingestion appeared to gradually increase from October to De-cember for LWfG at Kerkini, corresponding to a gradual depletion of their food source.

Literature type: Scientific

Journal: Journal of Ornithology

Volume: 155 , Pages: 707-712.

DOI: 10.1007/s10336-014-1056-6

Language: English

Full reference: Wang, X, Fox, A.D., Zhuang, X., Cao, L., Meng, F. & Cong, P. 2014. Shifting to an energy-poor diet for nitrogen? Not the case for wintering herbivorous Lesser White-fronted Geese in China Journal of Ornithology 155: 707-712. https://www.dx.doi.org/10.1007/s10336-014-1056-6

Keywords: East Dongting Lake, Energy budget, foraging decisions, Nitrogen budget, Recessional grasslands, Uric acid

Abstract:

Geese often forage on mid-winter foods that fail to satisfy daily energy needs, but they may do so to acquire other nutrients, such as nitrogen. We tested thishypothesis by evaluating nitrogen budgets, namely thebalance of nitrogen income against expenditure, of winteringLesser White-fronted Geese Anser erythropus feedingat two sites within East Dongting Lake, China, where they could and could not balance daily energy budgets.Geese could balance nitrogen budgets in energy-rich habitats but were less able to do so in habitats where they failed to balance energy budgets. This study presents the first full nitrogen budget for a wintering goose species, and suggests that, rather than acting as a source of nitrogen, use of energy-poor but undisturbed habitats may represent a refuge from human disturbance at other habitats.

Number of results: 52